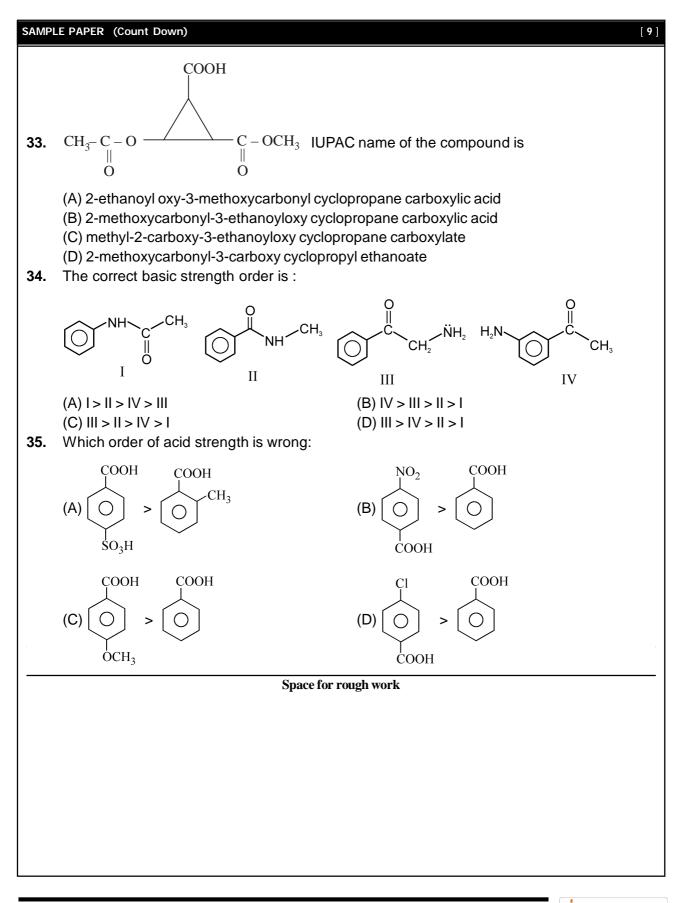
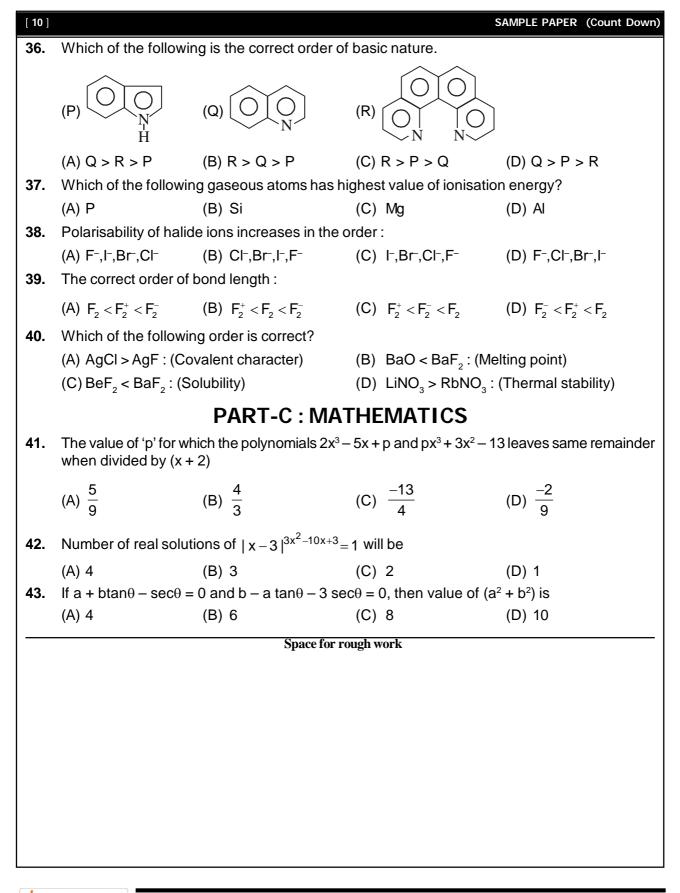

	Mentors Eduserv®								
ADMISSION CUM SCHOLARSHIP TEST									
SAMPLE TEST PAPER									
	(For Students Going to Class 12 TH IN 2025)								
		<u>STREAM</u> : ENGINEERING <u>COURSE OFFERED</u> : COUNTDOWN							
Tim	e : 2 h		s. 240						
	C. 2 I		5. 240						
JR.	(A)	General :							
LATC	1.	This Question paper contains THREE parts (Physics, Chemistry and Mathematics).							
IVIGI	2.	This Question Paper contains 12 pages, other than the OMR.							
LET, AWAIT INSTRUCTIONS FROM THE INVIGILATOR.	3.	This Question Paper contains total 60 questions, 20 questions each in Physics, Chemistry and Mathematics.							
NS FRO	4.	The Question Paper has blank spaces at the bottom of each page for rough work.No additional sheets will be provided for rough work.							
RUCTIOI	5.	Blank papers, clip boards, log tables, slide rule, calculators, cellular phones, pagers and electronic gadgets, in any form, are NOT allowed.							
NSTF	6.	This booklet also contains the OMR answer sheet (i.e., A machine gradable Response Sheet).							
AIT I	(B)	Answering on the OMR:							
T, AW	7.	Each question will have 4 choices in both the Sections, out of which only one choice is correct .							
KLE	8.	Fill the bubble with Ball Pen (Blue or Black) ONLY.							
воо	(C)	Filling – Name and Registration No.	$ \mathcal{O} $						
DO NOT BREAK THE SEALS ON THIS BOOK	9.	On the OMR sheet , write your Name and Registration No. using ball pen. Also, put your signature in the appropriate box using ball pen.							
VLS C	(D)	Marking Scheme:							
HE SE /	9.	(a) For each question, you will be awarded +4 marks if you have darkened only one bubble corresponding to the right answer.							
AK T		(b) In case you have not darkened any bubble, you will be awarded 0 mark for that question.							
BRE	(c) In all other cases, you will be awarded –1 mark.								
τονο	Name :								
ă	Registration No.:								

Mentors Eduserv : Parus Lok Complex, Boring Road Crossing, Patna-1


SAMPLE PAPER (Count Down) [5] Two spheres each of mass M and radius R/2 are connected with a massless rod of length R 14. as shown in the figure. The moment of inertia of the system about an axis passing through the centre of one of the spheres and perpendicular to the rod is (A) $\frac{21}{5}$ MR² (B) $\frac{2}{5}$ MR² (C) $\frac{5}{2}$ MR² (D) $\frac{5}{21}$ MR² Two water pipes of diameters 2 cm and 4 cm are connected with the main supply line in 15. sereis. The velocity of flow of water in the pipe of 2 cm diameter is (B) $\frac{1}{4}$ times that in the other pipe (A) 4 times that in the other pipe (D) $\frac{1}{2}$ times that in the other pipe (C) 2 times that in the other pipe 16. Work done in splitting a drop of water of 1 mm radius into 64 droplets is (Surface tension of water is 72×10^{-3} J/m²) (C) 4 × 10^{−6} J (A) 2.0×10^{-6} J (B) 2.7×10^{-6} J (D) 5.4 × 10^{−6} J Space for rough work


[6]				SAMPLE PAPER (Count Down)			
17.	On a smooth inclined plane a body of mass M is attached between two springs. The other ends of the springs are fixed to firm supports. If each spring has a force constant k , the period of oscillation of the body is (assuming the spring as massless)						
	k 0000 M 100000						
	(A) $2\pi\sqrt{\frac{M}{2k}}$	(B) $2\pi\sqrt{\frac{2M}{k}}$	(C) $2\pi \sqrt{\frac{M\sin\theta}{2k}}$	(D) $2\pi\sqrt{\frac{2M\sin\theta}{k}}$			
18.	• •	ut 450 Hz, approaches a server in Hz is (speed of server in Hz is (speed of server in Hz is)		eed of 33 m/s. The frequency			
	(A) 409	(B) 429	(C) 517	(D) 500			
19.	•		ed from <i>T</i> to 2 <i>T</i> and its rac earth to what it was previo	dius from <i>R</i> to 2 <i>R</i> , then the ously will be			
	(A) 4	(B) 16	(C) 32	(D) 64			
20.				What will be the root mean nd absolute temperature is			
	(A) 300 m/s	(B) 150 m/s	(C) 600 m/s	(D) 75 m/s			
		Space	for rough work				
		•	0				

SAMP	le pap	ER (Count	Down)						[7]
				PART-	B : CH	IEMISTR	RY		
21.	XeF_6 fluorinates I ₂ to IF ₇ and liberates Xenon(g). 210 mmol of XeF ₆ can yield a maximum								
	of mmol of IF_7 ; $[7XeF_6 + 3I_2 \rightarrow 7Xe + 6IF_7]$								
	(A) 4	20	(E	3) 180		(C) 210		(D) 245	
22.	How N.T.	•	oles of po	otassium chlo	orate nee	d to be heat	ed to prod	luce 11.2 litre o	xygen at
	(A)	$\frac{1}{2}$ mol	(E	3)		(C) $\frac{1}{4}$ mol		(D) $\frac{2}{3}$ mol	
23.	The	correct s	et of quar	tum number	rs for unp	aired electro	ns of chlor	ine atom is	
		n	ℓ	m					
	(A)	2	1	0					
	(B)	2	1	1					
	(C)	3	1	1					
	(D)	3	0	0					
24.	Whi	ch of the	following	does not cha	aracterise	X - rays ?			
	(A) ⁻	The radia	tion can ic	nise gases					
	(B) I	t causes l	ZnS to flu	rescence					
	(C) I	Deflected	by electri	c and magne	etic field				
	(D) ł	nave wav	elengths s	shorter than u	ultraviole	rays			
25.	The	root mea	n square	speed of 8 g	of He is	300 ms ⁻¹ . To	tal kinetic	energy of He ga	as is :
	(A) ´	120 J	(E	3) 240 J		(C) 360 J		(D) None of th	ese
26.	Two glass bulbs A and B at same temperature are connected by a very small tube having a stopcock. Bulb A has a volume of 100 cm ³ and contained the gas while bulb B was empty. On opening the stopcock, the pressure fell down to 20%. The volume of the bulb B is .								
	(A) ′	100 cm ³	(E	3) 200 cm ³		(C) 250 cm	1 ³	(D) 400 cm ³	
				SI	pace for ro	ıgh work			

Mentors Eduserv[®]

[8]				SAMPLE PAPER (Count Down)		
27.	-	work done in ergs for th 0 L to 20 L at 25° C is	ne reversible expansio	n of one mole of an ideal gas		
	(A) 2.303 × 298 × 0	.082 log 2	(B) $298 \times 10^7 \times 8$.	31 × 2.303 log 2		
	(C) 2.303 × 298 × 0).082 log 0.5	(D) 2.303 × 298 × 2 log 2			
28.		•		nt external pressure of 1 atm work by the gas in joules		
	(A) – 3039 J	(B) <i>–</i> 4052 J	(C) –1013 J	(D) –2026 J		
29.	consider a gas pha	ase reaction $2SO_2 + O_2$	$\Rightarrow 2SO_2 \cdot If P_{SO_2}; P_{O_2} a$	nd P _{so3} represent Equilibrium		
				on of K_p for above reaction?		
	(A) $\frac{P_{SO_3}^2}{P_{SO_2}^2.P_{O_2}}$	(B) $\frac{P_{SO_2}^2 \cdot P_{O_2}}{P_{SO_3}^2}$	(C) $\frac{P_{SO_2}.P_{O_2}^2}{P_{SO_3}}$	(D) $\frac{P_{SO_2}^2 P_{SO_3}^2}{P_{O_2}}$		
30.		nstant (K _c) for the rea rium constant for the r)+Cl ₂ (g) is 4×10^{-34} at 25°C.		
	$\frac{1}{2}{\rm H_2(g)} + \frac{1}{2}{\rm Cl_2(}$	$g) \rightleftharpoons HCI(g)$				
	(A) 2 × 10 ⁻¹⁷	(B) 2.5 × 10 ³³	(C) 5 × 10 ⁶	(D) None of these		
31.	When 0.4 g of NaC	OH is dissolved in one	litre of solution, the pH	of the solution is –		
	(A) 12	(B) 2	(C) 6	(D) 10		
32.	The hydrogen ion of with 100 mL of 0.8		f the solution made by	mixing 100 mL of 1.0 M HNO_3		
	(A) [H⁺] = 0.1 M, pH	l = 1	(B) [H ⁺] = 0.01 M,	pH = 2		
	(C) $[H^+] = 1 \times 10^{-12}$	M, pH = 12	(D) [H ⁺] = 1 × 10 ⁻⁷	⁷ M, pH = 7		
	Space for rough work					

SAMP	LE PAPER (Count Dow	n)		[11]
44.	The maximum val	ue of $\log_{20}(3\sin x - 4\cos x)$	sx+15) is equal to :	
	(A) 1	(B) 2	(C) 3	(D) 4
45.	If $0 < x, y < 2\pi$, t cos x cos y = 1/4		ns of the system of equ	uations sin x sin y = $3/4$ and
	(A) 0	(B) 1	(C) 2	(D) infinite
46.	If $0 \le x \le \frac{\pi}{2}$, then	n the solution of the equ	uation $16^{\sin^2 x} + 16^{\cos^2 x} =$	10 is given by x equal to
	(A) $\frac{\pi}{6}, \frac{\pi}{3}$	(B) $\frac{\pi}{3}, \frac{\pi}{2}$	(C) $\frac{\pi}{6}, \frac{\pi}{2}$	(D) none of these
47.	If the points (2a, a the centroid of the		lose a triangle of area 7	2 units, then co-ordinates of
48.		he line segment joining		(D) (16, 16) d Q(–1, 7) internally such that
49.	(A) (1, 3)	the co-ordinates of pc (B) $(3, -2)$ e circle $x^2 + y^2 - 4x$	(C) (1,−4)	(D) (–2, 1)
			(C) $3\sqrt{5}$ units	(D) 4√5 units
50.		triangle and D is the		d is the diameter of a circle cumscribed on the triangle,
	(A) a + b	(B) 2(a+b)	(C) $\frac{1}{2}(a+b)$	(D) $\sqrt{a^2 + b^2}$
51.	If the segment intering the segment interior of the segment in the segment is the segment in the segment is a segment is a segment in the segment is a segment in the segment is a segment is a segment in the segment is a segment in the segment is a segmen		ola $y^2 = 4ax$ with the line	e $\ell x + my + n = 0$ subtends a
	(A) $4a\ell + n = 0$	(B) $4a\ell + 4am + n$	= 0 (C) $4am + n = 0$	(D) $a\ell + n = 0$
52.	The latus rectum	of the ellipse $9x^2 + 5y^2$	$^{2} = 45$ is	
	(A) $\frac{18}{\sqrt{5}}$	(B) $\frac{\sqrt{5}}{18}$	(C) $\frac{\sqrt{5}}{3}$	(D) none of these
		Space f	or rough work	

Mentors Eduserv[®]

[12]				SAMPLE PAPER (Count Down)		
53.	Equation of the hy and y-axis	yperbola passing throu	igh the point (1, −1) and	d having asymptotes x-axis		
	-	(B) xy = 1	(C) $x + y = 0$	(D) none of these		
54.		, a _n , a _{n+1} are in A.P., th				
	$\left(\frac{1}{a_{1} \cdot a_{2}} + \frac{1}{a_{2} \cdot a_{3}} + \frac{1}{a_{3} \cdot a_{4}} + \dots + \frac{1}{a_{n-1} \cdot a_{n}} + \frac{1}{a_{n} \cdot a_{n+1}}\right)$					
	(A) $\frac{n-1}{a_1 \cdot a_{n+1}}$	(B) $\frac{n+1}{a_1 \cdot a_{n+1}}$	(C) $\frac{1}{a_1 \cdot a_{n+1}}$	(D) $\frac{n}{a_1 \cdot a_{n+1}}$		
55.	There are n A.M's b of n is.	between 3 and 54, such	that the 8th mean : (n –	2) th mean : : 3 : 5. The value		
	(A) 12	(B) 16	(C) 18	(D) 20		
56.	If α , β are the root	$x^{2} - 2x + 4 = 0$ the	$a^5 + \beta^5 =$			
	(A) 8	(B) 32		(D) 16		
57.		ots of $x^2 + x + a = 0$				
	(A) a = 1/2	(B) a < −1/2	(C) a > -1/2	(D) a =2		
58.	The conjugate of	a complex number is	$\frac{1}{i-1}$. Then that com	plex number is		
	(A) $\frac{1}{i-1}$	(B) $-\frac{1}{i-1}$	(C) $\frac{1}{i+1}$	(D) $-\frac{1}{i+1}$		
59.	In how many ways be always togethe		ged in a shelf so that a	particular pair of books shall		
	(A) 8 !	· · ·	(C) 2 × 8 !	· · /		
60.) ²ⁿ and (1 + x) ²ⁿ⁻¹ will be		
	(A) 1 : 2	(B) 2 : 1	(C) 3 : 1	(D) 1 : 3		
		Space f	or rough work			
		×.	0			

SAMPLE PAPER (Count Down) [13]								
ANSWER KEYS								
	SAMPLE TEST PAPER							
	(For Students Going to Class 12 [™] IN 2025)							
	<u>STREAM</u> : ENGI	NEERING <u>COL</u>	JRSE OFFERED :	COUNTDOWN				
		PHYS	SICS					
1.	(A)	2. (D)	3. (B)	4. (B)				
5.	(C)	6. (D)	7. (B)	8. (A)				
9.	(C)	10. (C)	11. (C)	12. (A)				
13.	(A)	14. (A)	15. (A)	16. (B)				
17.	(A)	18. (D)	19. (D)	20. (B)				
		CHEM	ISTRY					
21.	(B)	22. (B)	23. (C)	24. (C)				
25.	(C)	26. (D)	27. (B)	28. (D)				
29.	(A)	30. (D)	31. (A)	32. (A)				
33.	(A)	34. (D)	35. (C)	36. (B)				
37.	(A)	38. (D)	39. (B)	40. (A)				
		MATHEI	MATICS					
41.	(A)	42. (B)	43. (D)	44. (A)				
45.	(C)	46. (A)	47. (D)	48. (A)				
49.	(A)	50. (A)	51. (A)	52. (D)				
53.	(A)	54. (D)	55. (B)	56. (B)				
57.	(B)	58. (D)	59. (D)	60. (B)				
L								

Mentors Eduserv[®]